skip to main content


Search for: All records

Creators/Authors contains: "Yin, Xiangyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Remote monitoring and evaluation of pulmonary diseases via telemedicine are important to disease diagnosis and management, but current telemedicine solutions have limited capability of objectively examining the airway's internal physiological conditions that are crucial to pulmonary disease evaluation. Existing solutions based on smartphone sensing are also limited to externally monitoring breath rates, respiratory events, or lung function. In this paper, we present PTEase, a new system design that addresses these limitations and uses commodity smartphones to examine the airway's internal physiological conditions. PTEase uses active acoustic sensing to measure the internal changes of lower airway caliber, and then leverages machine learning to analyze the sensory data for pulmonary disease evaluation. We implemented PTEase as a smartphone app, and verified its measurement error in lab-controlled settings as <10%. Clinical studies further showed that PTEase reaches 75% accuracy on disease prediction and 11%-15% errors in estimating lung function indices. Given that such accuracy is comparable with that in clinical practice using spirometry, PTEase can be reliably used as an assistive telemedicine tool for disease evaluation and monitoring. 
    more » « less
    Free, publicly-accessible full text available June 18, 2024
  2. Pulmonary diseases, such as asthma and Chronic Obstructive Pulmonary Disease (COPD), constitute a major public health challenge. The disease symptoms, including airway obstruction and inflammation, usually result in changes in airway mechanical properties, such as the caliber and impedance of the airway. To measure such airway properties for disease evaluation and diagnosis purposes, pulmonary function tests (PFT) has been widely adopted. However, most existing PFT systems require expensive and cumbersome hardware that are impossible to be used out of clinic. To allow out-clinic continuous pulmonary disease evaluation, in this paper we present AWARE, a new sensing and AI system that supports accurate and reliable PFT using commodity smartphones. AWARE uses a smartphone to transmit acoustic signals and reconstructs the profile of human airway based on the analysis of reflected acoustic waves captured from the smartphone's microphone. The subject's pulmonary condition is then evaluated by a multi-task learning model that integrates both the airway measurements and the subject's lung function records as the ground truth. Evaluations on 75 human subjects demonstrate that AWARE has the capability to achieve 80% accuracy on distinguishing between humans with healthy pulmonary function and with asthma symptoms. 
    more » « less
  3. null (Ed.)
    Determining the energetically most favorable structure of nanoparticles is a fundamentally important task towards understanding their stability. In the case of bimetallic nanoclusters, their vast configurational space makes it especially challenging to find the global energy optimum via experimental or computational screening. To that end, this work proposes a two-step optimization-based design framework to address this hard combinatorial problem. Given a nanocluster of fixed shape, a rigorous mixed-integer linear programming model is formulated based on a bond-centric cohesive energy function to identify the most cohesive bimetallic configuration for a given composition. This capability is coupled with a metaheuristic strategy that searches over the space of nanocluster shapes to obtain optimal structures. We apply our proposed methodology on AgCu, AuAg and CuAu systems, quantifying how the size and composition of a nanocluster influences its overall cohesion. Furthermore, we observe various synergistic effects between Cu and Au in promoting cohesive energy, while multiple segregation patterns are identified in all three studied binary systems. Our methodology serves as an efficient computational tool for investigating bimetallic nanoclusters stability properties as well as provides model nanoclusters for further investigations. 
    more » « less